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We investigate the Josephson current in a graphene superconductor/normal/superconductor junction, where
superconductivity is induced by means of the proximity effect from external contacts. We take into account the
possibility of anisotropic pairing by also including singlet nearest-neighbor interactions, and investigate how
the transport properties are affected by the symmetry of the superconducting order parameter. This corresponds
to an extension of the usual on-site interaction assumption, which yields an isotropic s-wave order parameter
near the Dirac points. Here, we employ a full numerical solution as well as an analytical treatment, and show
how the proximity effect may induce exotic types of superconducting states near the Dirac points, e.g., px- and
py-wave pairing or a combination of s- and p+ip-wave pairing. We find that the Josephson current exhibits a
weakly damped, oscillatory dependence on the length of the junction when the graphene sheet is strongly
doped. The analytical and numerical treatments are found to agree well with each other in the s-wave case
when calculating the critical current and current-phase relationship. For the scenarios with anisotropic super-
conducting pairing, there is a deviation between the two treatments, especially for the effective px-wave order
parameter near the Dirac cones which features zero-energy states at the interfaces. This indicates that a
numerical, self-consistent approach becomes necessary when treating anisotropic superconducting pairing in
graphene.
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I. INTRODUCTION

The unusual electronic properties of the charge carriers in
graphene1 have triggered a massive interest in this material
over the last few years. Graphene is a monolayer of graphite,
and thus has a two-dimensional honeycomb lattice structure
consisting of two triangular sublattices. The two most inter-
esting features of the dispersion relation for the quasiparti-
cles moving in a graphene sheet is that �i� the quasiparticles
at Fermi level are nodal, meaning there is no Fermi surface at
zero doping, and that �ii� the band structure is conical, thus
giving rise to an effective mass of zero for the quasiparticles.
These facts have paramount implications for a number of
physical properties of a graphene sheet.2,3

Quite recently, proximity-induced superconductivity in
graphene was achieved experimentally by means of deposit-
ing superconducting contacts on a graphene sheet.4–6 This
has led to multiple investigations with respect to the trans-
port properties of superconducting graphene.7–20 Some of the
key findings in these investigations include the possibility of
specular Andreev reflection,7 oscillations in the conductance
of a superconductor/normal �SN� junction,9,11 and a finite
Josephson current even at the Dirac point in an
superconductor/normal/superconductor �SNS� junction.8

Very recently, some authors have also explored the interplay
between proximity-induced ferromagnetism21,22 and super-
conductivity in graphene.23–25,28 So far in the literature, con-
ventional s-wave superconducting pairing has been the pri-
mary focus, whereas only little attention has been paid to
how unconventional pairing in superconducting graphene
structures influence the transport properties.15,19,26,27

In the majority of studies considering transport properties
of superconducting graphene hybrid structures only an ana-
lytical scattering matrix approach has been employed. The

advantage of such a treatment as compared to a purely nu-
merical one is that it often offers more physical insight into
the problem. On the other hand, a numerical self-consistent
treatment is more authoritative and will in general provide
more accurate results both qualitatively and quantitatively.12

Ideally, it would therefore be desirable to compare an ana-
lytical approach with a numerical treatment in order to see
which conclusions obtained in the former case still hold in
the latter case.

Motivated by this, we present in this paper both an ana-
lytical and numerical study of the Josephson current in an
SNS graphene junction �see Fig. 1� using both conventional
and unconventional superconducting contacts. We here allow
for the unconventional pairing by means of including
nearest-neighbor interactions in a tight-binding model. This
interaction gives rise to exotic types of superconducting
states near the Dirac points, which also significantly alters
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FIG. 1. �Color online� The experimental setup proposed in this
paper. Two superconducting electrodes in close proximity to a
graphene sheet induces superconductivity. The Josephson current
flows through the graphene sheet indicated by the red arrow. Top
and bottom gates contacted to the graphene sheet permit local con-
trol over the chemical potential.
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the behavior of the supercurrent in the system. Our main
result is that, whereas the analytical and numerical treat-
ments are found to agree well with each other in the isotropic
s-wave case, there is a deviation between the two treatments
in the anisotropic case, especially for an effective px-wave
order parameter near the Dirac cones featuring zero-energy
states. This finding suggests that a numerical, self-consistent
approach is required when studying anisotropic supercon-
ducting pairing in graphene.

The article is organized as follows: in Sec. II, we lay the
theoretical foundation in terms of notation and formalism. In
Sec. III, we present and discuss our main results, focusing on
the analytical treatment in Sec. III A and the numerical ap-
proach in Sec. III B. Finally, we summarize our findings in
Sec. IV.

II. THEORY

A. Analytical treatment

Our starting point is the tight-binding Hamiltonian on the
graphene lattice, including a superconducting pairing order
parameter that is induced by the proximity effect from exter-
nal superconducting contacts. We include the possibility for
both on-site superconducting pairing and nearest-neighbor
pairing by means of nearest-neighbor spin-singlet bond �SB�
correlations. The full Hamiltonian takes the form

H = − t�
ij�

�Ai�
† Bi+aj,�

+ H.c.� − ��
i�

�Ai�
† Ai� + Bi,�

† Bi,��

+ �
ij

��Jaj
�Ai↑

† Bi+aj,↓
† − Ai↓

† Bi+aj,↑
† � + H.c.�

+ �
i

��U�Ai↑
† Ai↓

† + Bi↑
† Bi↓

† � + H.c.� + constant terms.

�1�

Here, Ai� and Bi� are the second quantized fermion operators
on the sublattices A and B, while a j denotes the three nearest-
neighbor vectors �see Fig. 2�. They read a1=a�1,0�, a2=a�
−1,�3� /2, and a3=a�−1,−�3� /2, where a is the interatomic
distance of the carbon atoms. For later use, we also define
the reciprocal vectors to the Dirac points K� as K�

= �0, �4� /3�3a�. The superconducting pairing is accounted
for by �U, which corresponds to the on-site interaction, and
�Jaj

, which corresponds to the pairing interaction along the
nearest-neighbor vectors a j. �Jaj

may in general be different
for different a j’s, i.e., the three different nearest-neighbor
bonds. In fact, a self-consistent solution admits three pos-
sible solutions29 classified as follows upon defining �J
= ��Ja1

,�Ja2
,�Ja3

�:

Extended s wave:�J = �t�1,1,1� ,

dx2−y2 wave:�J = �t�2,− 1,− 1� ,

dxy wave:�J = �t�0,1,− 1� . �2�

The classification of the different symmetries stems from
which irreducible representation of the crystal point group
D6 they belong to when considered in the whole band-
structure Brillouin zone, i.e., the full reciprocal unit cell in
the basis where the kinetic energy is diagonal. The extended
s-wave gap is proportional to the band dispersion, i.e., ��q
given below in Eq. �30�. It has the full symmetry of the
lattice, thus belonging to the A1 irreducible representation
although, in contrast to the on-site s-wave �U, it varies in
magnitude over the Fermi surface. The different d-wave so-
lutions have fourfold symmetries and belong to the two-
dimensional E2 irreducible representation and, therefore,
technically any linear combination of these two solutions is a
valid solution from a symmetry standpoint. For an effective
potential giving rise to an intrinsic SB pairing in the transla-
tional invariant bulk the two d-wave states are degenerate at
Tc but the complex combination dx2−y2 + idxy is favored just
below Tc.

29 Interestingly, this state breaks thus time-reversal
symmetry �TRS�. Here, however, the SB pairing is induced
into the graphene from external contacts and we choose to
limit the symmetries studied to the ones given in Eq. �2� as
those would be the ones naturally induced from correspond-
ingly aligned d-wave superconducting contacts, such as
high-Tc cuprate superconductors.

Introducing the Fourier transform of the fermion opera-
tors according to

Aq� = �
i

Ai�e−iqri, Ai� = �
q

Aq�eiqri, �3�

and similarly for A→B, we may write down the Hamiltonian
in momentum space �now discarding irrelevant constant
terms�

H = �
q

	q
†Mk	q,

	q
† = �Aq↑

† ,Bq↑
† ,A−q↓,B−q↓� ,

FIG. 2. �Color online� The graphene honeycomb lattice with the
two different atomic sites A and B, the three nearest-neighbor di-
rections �a1 ,a2 ,a3�, and the zigzag and armchair interfaces marked.
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Mq =	
− � 
�q� �U ��q�


†�q� − � ��− q� �U

�U
† �†�− q� � − 
†�− q�

�†�q� �U
† − 
�− q� �


 . �4�

Again, �U is the superconducting order parameter resulting
from on-site pairing interaction, while we have defined


�q� = − t�
j

eiqaj, ��q� = �
j

�Jaj
eiqaj . �5�

We are interested in the behavior near the Dirac points K�,
and hence wish to evaluate Mq at q=K�+k where �k�
� �K��, i.e., in the low-energy limit. In this case, we find by
means of a straightforward Taylor expansion, that


�K� + k� = vF�− ikx � ky� , �6�

with the definition vF=3ta /2, while for the superconducting
order parameters we have

Extended s wave:��K� + k� =
3�ta

2
�ikx � ky� ,

dx2−y2 wave:��K� + k� = 3�t�1 +
a

2
�ikx � ky� ,

dxy wave:��K� + k� = �3�t��i +
a

2
�− iky � kx� . �7�

From Eq. �7�, the classification of the different symmetries
for nearest-neighbor pairing is far from obvious. This is be-
cause in Eq. �7� they are expressed in reciprocal space where
the kinetic energy is not diagonal. By diagonalizing the ki-
netic energy through an unitary transformation on A and B,
the correct symmetries will appear. These low-energy expan-
sions are given in Sec. III A 2. Diagonalization of the Hamil-
tonian in Eq. �4� yields the Dirac Bogoliubov-de Gennes
�DBdG� equation, which describes the quasiparticle excita-
tions in the system. We find that the DBdG equation close to
the Dirac points may be written as

	
− � 
�K� + k� �U ��K� + k�


†�K� + k� − � ��K� − k� �U

�U
† �†�K� − k� � − 
†�K� − k�

�†�K� + k� �U
† − 
�K� − k� �




= E . �8�

Due to the valley degeneracy, it suffices to consider only the
Dirac point K+. For concreteness, we include on-site and
extended s-wave symmetry superconducting pairing below.
It should be noted that the superconducting pairing potential
couples electron and hole excitations between the two val-
leys K+ and K− in Eq. �8�, as required by time-reversal sym-
metry �within a single valley, time-reversal symmetry is bro-
ken�. In this case, we find that

	
− � vF�− ikx + ky� �U 3�ta�ikx − ky�/2

vF�ikx + ky� − � − 3�ta�ikx + ky�/2 �U

�U
† 3�t

†a�ikx − ky�/2 � − vF�− ikx + ky�
− 3�t

†a�ikx + ky�/2 �U
† − vF�ikx + ky� �


 = E . �9�

Note that normal-state �nonsuperconducting� contribution to
the above is slightly different from the usual Dirac equation
−��0+vFp ·�. In fact, the upper-left 2�2 matrix of Eq. �9�
may be written as −��0+vF�kx�y +ky�x�. The reason for this
discrepancy is that the exact form of the Hamiltonian de-
pends on the choice of nearest-neighbor vectors a j , j
� �1,2 ,3�, which were introduced previously. The physics
must clearly remain completely unchanged regardless of the
choice of a j. However, to facilitate comparison with previous
work in the literature we revert to a choice that yields a
Dirac-like Hamiltonian for the normal-state. This is simply
accomplished by switching the coordinate system chosen
originally, i.e., kx↔ky. Performing this substitution in Eq. �9�
yields the desired form of the normal-state Hamiltonian.

The strategy for calculating the Josephson current in the
junction is to first obtain the energy spectrum for the
Andreev-bound states in the normal region of graphene. This
is done by matching the wave functions at the two SN inter-

faces, and then solving for the allowed energy states. Explic-
itly, the boundary conditions dictate that �L �x=0=�N �x=0 and
�R �x=L=�N �x=L, where L is the length of the N region, i.e.,
the junction length and

�N = t1+
e + t2−

e + t3+
h + t4−

h ,

�L = tL
e�−

e + tL
h�−

h, �R = tR
e �+

e + tR
h�+

h . �10�

We allow for the chemical potential to be different in the S
and N regions. Finally, note that the subscript � on the wave
functions in the normal region indicates the direction of their
group velocity, which in general is different from the direc-
tion of momentum. Consequently, although the Andreev- re-
flected hole wave function carries a subscript “−” above, one
should keep in mind that for normal Andreev reflection, the
direction of momentum is opposite to the group velocity for
the hole.
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The Josephson current is computed via the usual energy-
current relation summed over projections of all paths perpen-
dicular to the tunneling barrier30

IJ���� =
4e

�
�

i
�

−�/2

�/2 d� cos �

f−1�
i�����
d
i����

d��
, �11�

where 
i���� are the Andreev-bound states carrying the cur-
rent in the N region, and ��=�R−�L is the macroscopic
phase difference between the superconductors. The integra-
tion over angles � takes into account all possible trajectories
and f�x� is the Fermi-Dirac distribution function. We define
the critical supercurrent as Ic= �max�IJ������, and note that
the factor of 4 in front of the summation in Eq. �11� is due to
the spin-valley degeneracy. The formula for the Josephson
current disregards the contribution from supergap states,
which is allowed as long as L /��1, i.e., a short junction.

B. Self-consistent numerical treatment

A self-consistent numerical treatment allows for spatially
varying order parameters, �U and �J, and will thus directly
capture the proximity effect inside the junction through the
depletion of pair amplitude in the superconductor near the
interface and the induction of pair amplitude into the normal
region. From this it is also possible to explicitly calculate the
full Josephson current without any restrictions to small junc-
tions as is the limitation for the analytical treatment with
Andreev-bound states. Naturally, the local density of states
�LDOS� will also be readily available. Here, we will use the
tight-binding Bogoliubov-de Gennes �TB BdG� formalism,
which allows for a self-consistent solution of the order pa-
rameters as a function of position. The procedure has been
outlined in detail in Refs. 12 and 31 and we will here only
outline the essentials in order to connect to the analytical
treatment and interpret the results.

As in the case of the analytical treatment above of a
graphene SNS Josephson junction we only want to model the
actual graphene sheet. Therefore, we have to capture the ef-
fect of the superconducting contacts deposited on top of the
sheet by some effective parameters. In the analytical treat-
ment this was simply done by assuming that the contacts
induce constant order parameters, or gaps, �U and �J, in the
S regions. For spatially varying order parameters we need to
go beyond that approximation and we will instead model the
effect of the superconducting contacts by using effective
pairing potentials which are only nonzero in the S regions of
the graphene sheet. For s-wave contacts the pairing correla-
tions induced into the graphene are modeled by a simple
attractive Hubbard U term. The nearest-neighbor SB pairing
can in the same way be produced by an effective SB poten-
tial J where the effective coupling is given by a JSi ·Sj term
between nearest neighbors.31 Thus, the starting point for a
TB BdG treatment is the following effective Hamiltonian:31

Heff = − t�
ij�

�Ai�
† Bi+aj,�

+ h.c.� − �
i�

��i��Ai�
† Ai� + Bi,�

† Bi,��

− �
i

U�i��Ai↑
† Ai↑Ai↓

† Ai↓ + Bi↑
† Bi↑Bi↓

† Bi↓� − �
ij

2J�i�Fij
† Fij ,

�12�

where

Fij
† =

1
�2

�Ai↑
† Bi+aj,↓

† − Ai↓
† Bi+aj,↑

† � �13�

is the nearest-neighbor SB creation operator. With a simple
Hartree-Fock-Bogoliubov mean-field approximation Eq. �12�
can be transformed into Eq. �1�, but now with the position-
dependent order parameters

�U�i� = − U�i�
�Ai↓Ai↑� + �Bi↓Bi↑�

2
�14�

�Jaj
�i� = − J�i��Ai↓Bi+aj↑ − Ai↑Bi+aj↓� . �15�

A standard TB BdG formulation of this mean-field Hamil-
tonian, Eq. �1�, will result in a 4N�4N eigenvalue problem,
where N is the number of unit cells in the whole junction,
and position-dependent, BCS self-consistency equations for
�U�i� and �J�i�. By starting with an initial guess for the
order parameters �U�i� and �J�i�, then solving the eigen-
value problem for these values, and finally using the
Bardeen-Cooper-Schrieffer �BCS� self- consistency equa-
tions, we can compute new values for the order parameters
and continue the process until self-consistency is reached.
For a specific symmetry of the SB pairing contacts, we sim-
ply restrict �J to that particular symmetry. Since the order
parameters are by definition zero in the N region where U
and J are zero, the relevant parameters to describe the prox-
imity effect inside the junction are instead the pairing ampli-
tudes FU�i�=−�U�i� /U�i� and FJaj

�i�=−�Jaj
�i� / ��2J�i��. The

other significant quantity to study in a SNS junction is the
Josephson current. We calculate this by fixing the phase of
the order parameters in the very end of the contacts and then
solving self-consistently in the rest of the sample. The Jo-
sephson current can be calculated relatively straightfor-
wardly using the continuity equation and the Heisenberg
equation for the electron density �see Ref. 12 for further
details�. It should be noted that in this approach the phase of
the order parameter is allowed to vary even in the S regions,
except at the very end of the contacts. This ensures true
bulklike conditions and gives a consistent Josephson current
throughout the structure. However, it has the side effect that
the phase difference �� over the junction itself will always
be less than �, since that is the largest phase difference we
can apply across the whole structure, but part of this drop
will necessarily take place in S if the current is nonzero.
While this appears as a numerical artifact in this context, it is
in fact closely related to the physical 2� phase-slip process
in Josephson junctions �see, e.g., Ref. 32�.

Simulation details

Since the �J superconducting state corresponds to pairing
along the nearest-neighbor bonds on the bipartite honeycomb
lattice there will be a directional dependence for this state. In
particular, different interfaces will behave differently. The
two most common interfaces for the honeycomb lattice are
the zigzag and the armchair interfaces �see Fig. 2�, but any
chiral interface is experimentally possible. Now, since the
particular symmetries for the �J state, Eq. �2�, are either
fully symmetric or have a fourfold symmetry, the number of
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interface vs symmetry combinations can be reduced. Obvi-
ously, for the extended s wave, the interface orientation does
not matter. For the d-wave solutions, the solution for dx2−y2

wave on a zigzag interface should, at least to a good approxi-
mation, be the same as the dxy wave on an armchair interface.
But, as will be shown, the dx2−y2 and dxy waves on the same
interface behave significantly different. It is therefore of in-
terest to study both symmetry solutions but it suffices to look
at one interface. The analytic results in this article are calcu-
lated for an interface along the y direction, i.e., the zigzag
interface, though the detailed shape of the interface is obvi-
ously irrelevant in a continuum model. For the numerical
treatment, it turns out, however, that the dxy wave is strongly
suppressed at external edges, thus demanding bigger contact
regions, so instead of studying the dx2−y2 and dxy waves on
the zigzag interface, we instead study the dx2−y2-wave state
on both the zigzag and armchair interface, with the latter
equivalent to the dxy-wave solution on the zigzag interface.
In order to reduce the computational cost we consider only
clean, smooth interfaces and Fourier transform in the direc-
tion parallel to the interface, thus significantly reducing the
number of unit cells N. From an experimental point of view
this entails studying junctions with an infinite width, though
the periodicity of the solution is limited to one unit cell.

The physical input parameters in the TB BdG treatment
are the on-site pairing potential U for conventional s-wave
contacts, the SB pairing potential J for unconventional con-
tacts, the effective potential � in S and N, the length L of N,
and temperature. For conventional s-wave superconducting
contacts we choose the following setup: U�S�=3.4 eV
=1.36t and �S=1.5 eV=0.6t. This leads to �U=0.1 eV in
the bulk, which corresponds to a superconducting coherence
length �=�vF /�U�50 Å, which is 25 unit cells in the zig-
zag direction and 40 unit cells in the armchair direction.
These values satisfy �F�S���, allow us to numerically in-
vestigate both the L�� and L�� cases, and coincide with
previous work.12 They are, however, quite large values for a
realistic situation but a smaller superconducting gap leads to
a slower convergence rate and also a need for a larger system
making calculations less feasible. We have checked our key
results for smaller U and found no significant difference.

In order to be able to compare the results between the
conventional and unconventional contacts, we need to use
the same strength superconductor. This is not completely
trivial since the unconventional contacts have an energy gap
that varies on the Fermi surface. For the proximity effect in a
SNS junction the relevant scale is the coherence length �
since this parameter will determine the superconducting de-
cay length. We therefore choose the effective pairing poten-
tials such that � is unchanged between the different symme-
tries. For the unconventional superconducting contacts we
calculate �=�vF /�F, with �F=���k

2�FS being the average of
the energy gap �k over the Fermi surface.33 Since the doping
level is very high in the contacts, we can approximate the
band structure to only consist of one band and the energy gap
parameter for the unconventional contacts then simplifies
to29

�k = �
j

�Jaj
cos�k · a j − 	k� , �16�

where 	k=arg�� je
ik·aj�. Using this we find �F�d wave�

=
�3
2 �J where �J is the norm of �J. Then finally, by compar-

ing the coherence lengths, we can set J�S�=2.45 eV for a
straightforward comparison with the conventional s-wave
contacts. Please note that in the analytical formalism we
need to choose �t different for all three symmetries in order
to have the same �. For example, if �U=�0 then �t�ext. s�
= 2

3�0, �t�dx2−y2�=
�2
3 �0, and �t�dxy�=

�2
�3

�0, respectively.
We have for simplicity assumed that the doping profile

changes abruptly from �S to �N at the interface. This is the
same approximation as in the analytical solution and will
therefore provide the most accurate comparison. We have
studied junctions ranging from the undoped regime, �N
=0 eV, to moderately doped, �N=0.7 eV, to the case of no
Fermi wavevector mismatch �FVM�, i.e., �N=1.5 eV.

In terms of L, we have studied zigzag junctions with L
=2–60 unit cells �1 unit cell=2.13 Å� and armchair junc-
tions with the corresponding number of cells �1 unit cell
=1.23 Å�. The temperature was chosen to be T=10 K
throughout the work, which in comparison to Tc in the S
regions is effectively zero temperature. The accuracy of the
solution is determined by the choice of termination criterion
for the self-consistency step, the number of k points used in
the Fourier transform, the size of S and the region in S where
the phase of the order parameter is kept constant, all of
which have been tested thoroughly.

III. RESULTS AND DISCUSSION

A. Analytical results

In order to investigate how the unconventional pairing
near the Dirac points affects the Josephson current, we begin
by obtaining an analytical solution for the most possible gen-
eral case. In a realistic situation, there could be both on-site
and nearest-neighbor interactions, thus giving rise to both
isotropic s-wave pairing and one of the order parameters
given in Eq. �7�.

1. Extended s wave

We first consider the extended s-wave case, which gives
rise to an effective p+ip-wave order parameter near the
Dirac points. The BdG equation then reads

	
− � pe−i� �U �Te−i�

pei� − � �Tei� �U

�U
† �T

†e−i� � − pe−i�

�T
†ei� �U

† − pei� �

 = 
 . �17�

We here use units �=vF=1 and have defined px� ipy
� pe�i� and �T=−3p�ta /2. The above matrix is Hermitian
as required and may be diagonalized to yield the eigenvalues


�� = ����p − ��2 + ��U + ��T�2, �,� = � . �18�

Here, �= �1 denotes the conduction and valence band while
�= �1 distinguishes between electronlike and holelike exci-
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tations. The eigenfunctions may then be constructed in the
superconducting regions. We here only consider positive ex-
citation energies 
�0, and impose the mean-field restriction
that the chemical potential �S in the superconducting regions
must be much larger than the superconducting gap, i.e., �S
��. In this case, only the conduction band �=1 partakes in
the low-energy scattering processes. We define �v�p��2=1
− �u�p��2 with

u�p� =�1

2
�1 +

�
2 − ��U + �T�p��2



� . �19�

From Eq. �18�, one can then solve for the wavevector as
follows ��=1 since 
�0�:

qe,h =
�S − �U�̃T � �
2�1 + �̃T� − ���̃T + �U�2

1 + �̃T
2

, �20�

where �̃T=�T / p=−3�ta /2 and the scattering angles are ob-
tained by means of translational invariance in the y direction

qi sin �i = pe sin �, i = e,h. �21�

We also define ��=�S−�N and

pe = 
 + �N, ph = 
 − �N, ph sin �A = pe sin � , �22�

related to the quasiparticle momenta in the normal graphene
region. Here, �� is the difference in the local chemical po-
tential between the S and N region, which may be experi-
mentally controlled by means of a gate voltage on top of the
normal graphene segment.

Finally, we are able to write down the wave functions in
the three regions shown in Fig. 1. We remind the reader that
the effective pairing near the Dirac points is a mixture of
isotropic s and p+ip wave. However, note that while the
extended s wave in this picture corresponds to the even and
complex p+ip-wave symmetry, it breaks neither time-
reversal symmetry nor is it a spin-triplet. The deceptive ap-
pearance is due to the fact that the honeycomb lattice has two
distinct Fermi surfaces at all doping levels considered here
and when considered together, the spin-singlet character and
TRS invariance is preserved as it should be for an extended s
wave. Note that in what follows, we will assume that the s-
and p+ip-wave superconducting order parameters are phase-
locked, i.e., they are characterized by the same broken U�1�
gauge phase. For x�0, we have

�S,L = tL
e	

u�qe�
u�qe�ei��−�e�

v�qe�e−i�L

v�qe�ei��−�e−�L�

e−iqe cos �ex

+ tL
h	

v�qh�
v�qh�ei�h

u�qh�e−i�L

u�qh�ei��h−�L�

eiqh cos �hx, �23�

�N = a	
1

ei�

0

0

eipe cos �x + b	

1

− e−i�

0

0

e−ipe cos �x

+ c	
0

0

1

e−i�A

e−iph cos �Ax + d	

0

0

1

− ei�A

eiph cos �x,

�24�

�S,R = tR
e	

u�qe�
u�qe�ei�e

v�qe�e−i�R

v�qe�ei��e−�R�

eiqe cos �ex

+ tR
h	

v�qh�
v�qh�ei��−�h�

u�qh�e−i�R

u�qh�ei��−�h−�R�

e−iqh cos �hx, �25�

where �L,R is the superconducting phase on the left/right side
of the normal region, associated with the broken U�1� sym-
metry in the superconducting state. The macroscopic phase
difference is defined as ��=�R−�L.

In order to proceed with an analytical treatment, we ob-
serve that qe,h=�S under the assumption that �S� ��U ,�T�.
Moreover, the direction of the momentum that enters the
argument of the coherence functions �u ,v� in the wave func-
tions of Eqs. �23�–�25� is of no significance since only the
absolute value of the momentum enters �T. The directional
dependence has been separated out into the ei� factors of the
off-diagonal elements in Eq. �17�. Thus, the problem effec-
tively becomes equivalent to that of a conventional s-wave
superconductor with gap �0= ��U−3�S�ta /2�. So, while we
have included both onsite and nearest-neighbor interactions,
thus giving rise to a combination of s- and p+ip-wave pair-
ing, the results would have been identical had we chosen
only on-site or nearest-neighbor interaction, as long as the
nearest-neighbor interaction gives rise to the extended
s-wave symmetry in Eq. �7�. This conclusion is supported by
the findings of Jiang et al.,19 who found that the Andreev
conductance of a SN junction was identical for s-wave pair-
ing and the extended s-wave bond pairing �see their Fig.
3�c��.

We now obtain the following energies for the Andreev-
bound states in the normal region:


� = � ��U − 3�S�ta/2��1 − ����sin2���/2� ,

���� =
cos2 �

1 − sin2 � cos2�P cos ��
, P = �NL/vF. �26�

Note that �=0 if ����S and �=� if ��=0, where �=�e is
the angle of incidence of quasiparticles. In the former case,
we regain the results of Maiti and Sengupta,14 who studied
the case of a thin and very strong barrier separating the two
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superconducting regions. In the case ��=0, we have no
FVM between the graphene regions ��S=�N=��, and the
results change accordingly. In this case the normalized Jo-
sephson current at zero temperature becomes

IJ/I0 = �
−�/2

�/2 d�����cos � sin ��

�1 − ����sin2���/2�
, �27�

where I0=e�0 /�. In the following, we will study the depen-
dence of the Josephson current on the �i� phase difference,
�ii� doping level and length of the junction, and �iii� the
temperature dependence. Since we consider the regime �
� ��U ,�T�, which means that � typically could lie in the
range 10–100 meV, it is reasonable to expect that the role
played by charge inhomogeneities such as electron-hole
puddles may be disregarded in the main approximation. To
be more specific, the local variations in the Fermi level ��
should be of little importance as long as they satisfy ��
��. Experimentally, one has estimated34 ���5 meV,
which places a restriction on the appropriate values of �.

We now proceed to investigate the length dependence of
the critical current in Fig. 3�a�. In all the plots presented in
this section, the zero-temperature limit is assumed unless ex-
plicitly stated otherwise. To operate within a valid regime of
parameters, we restrict our attention to L /��0.15, where �
=�vF /�0 is the superconducting coherence length. As seen,
the critical current displays an oscillating decay. This is a
qualitatively different feature as compared to the results of
Refs. 8 and 14. For a strongly doped graphene junction, but
still with a FVM at the interfaces, Black-Schaffer and S.
Doniach.12 obtained numerically the length dependence of
the critical current. From Fig. 5�b� in that work, one may see
a hint of oscillations in the numerical data and it is clear that
the current does not decay monotonously. The same data, but
with more data points, are reproduced in Fig. 11�b� and from
this and Fig. 4 it is clear that both the numerical and analyti-
cal data show an oscillatory dependence on L in the strong
doping regime including the case of no FVM.

In Fig. 3�b�, we give the current-phase relationship for
several values of the length of the normal-region, using

� /�0=50, in the case when there is no FVM. As seen, the
current-phase relationship deviates slightly from the usual
sinusoidal form with the phase difference providing the criti-
cal current occurring at ��c� �� /2,��. Qualitatively, Fig.
3�b� is in agreement with the numerical results shown in Fig.
4 of Ref. 12. Note that by lowering � and L, the current-
phase relationship tends toward the functional form
sin��� /2�sgn�cos��� /2��.

The analytical treatment above is valid for either ��=0
�corresponding to zero FVM� or ����S �corresponding to
a barrier induced in the normal graphene region�. Next, we
consider a situation where the superconducting regions are
strongly doped, while the normal region is only weakly or
moderately doped. Since we have shown above that the ef-
fective s��p+ip�-wave pairing near the Dirac points is for-
mally equivalent to the isotropic s-wave case, we can here
use8

IJ =
e�0

�
�
n=0

N
�n sin ��

�1 − �n sin2���/2�
,

�n = kn
2�kn

2 cos2�knL� + �N
2 sin2�knL��−1,

kn = ��N
2 − qn

2, qn = �n + 1/2��/W . �28�

Above, W denotes the width of the graphene junction, which
we assume satisfies W�L. We assume that the supercon-
ducting regions are heavily doped, such that �S��N. In this
case, the number of propagating modes in the superconduct-
ing region is N=�SW /�. We now proceed to investigate how
the critical current depends on the length L of the junction.
We choose W /�=30 and �S /�0=150. The result is shown in
Fig. 4�a�. In general, the actual magnitude of the current
decreases with decreasing �N since there are fewer propagat-
ing modes available when �N→0. At weak doping �N /�0
�1–10, the current decays as 1.33I0W / ��L�, in agreement
with the findings of Ref. 8. However, as the doping level
increases, oscillations appear as a function of L. We also give
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FIG. 3. �Color online� Josephson current for the s-wave symme-
try with no FVM between the S and N regions ��S=�N=��. �a�
Plot of the length dependence of the critical current. �b� Plot of the
current-phase relationship for � /�0=50.
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the current-phase relation for the case with a strong FVM in
Fig. 4�b�, using L /�=0.1.

2. dx2−y2 and dxy wave

As seen from Eqs. �7�, the situation becomes quite com-
plicated when considering the d-wave symmetries that may
arise upon considering nearest-neighbor pairing. At least, this
is so when considering the DBdG equation in an atom-basis
picture, as has been done in the literature up to now. How-
ever, by transforming the DBdG equation to the band-
structure basis �conduction and valence � bands�, i.e., where
the kinetic energy is diagonal, we are able to treat the d-wave
symmetries analytically. This stems from the fact that the
d-wave symmetries in this basis have a simply fourfold sym-
metry and their low-energy expansions near the Dirac points
result in even simpler p waves. Below, we sketch this trans-
formation.

Our starting point is Eq. �7� in Ref. 29, where the super-
conducting pairing is written in the band picture as follows:

H = �
q�

��t�q − ��cq�
† cq� + �− t�q − ��dq�

† dq��

− �
q,j

� j�cos�q · a j − 	q��dq↑d−q↓
† − cq↑

† c−q↓
† �

+ i sin�q · a j − 	q��cq↑
† d−q↓

† − dq↑
† c−q↓

† � + H.c.� . �29�

Here, we have defined

�q = ��
a

eiqa� = �
q� . �30�

Introducing a basis in the band-picture q
†

= �cq↑
† ,dq↑

† ,c−q↓ ,d−q↓�, we may write the Hamiltonian as H
=�qq

†Nqq with

Nq =	
t�q − � 0 − Cq iSq

0 − t�q − � − iSq Cq

− Cq
� iSq

� − t�q + � 0

− iSq
� Cq

� 0 t�q + �

 , �31�

where we have defined

Cq = �
a

� j cos�q · a j − 	q� ,

Sq = �
a

� j sin�q · a j − 	q� , �32�

Note that Nq is Hermitian, so we know that its eigenvalues
will be real. As seen, the quantities �Cq ,Sq� play the roles of
the superconducting gaps for intra- and interband pairing,
respectively. We are interested in the behavior of Nq near the
Dirac points, effectively at the wavevector q=K�+k, where
again �k�� �K��, and K�= � �0,4� / �3�3a��. By inserting
this into Nq and linearizing in k, we obtain for the dxy-wave
symmetry featuring �=�t�0,1 ,−1� that

C�K� + k� = �
�tkx

�3�k�
, S�K� + k� = −

�t
�3ky

�k�
. �33�

Effectively, this is a px-wave pairing for Ck and py-wave
pairing for Sk. In an equivalent manner, we obtain for the
dx2−y2-wave case of �=�t�2,−1,−1� that

C�K� + k� = �
3�tky

�k�
, S�K� + k� = −

�tkx

2�k�
. �34�

Let us also briefly mention in passing that for the extended
s-wave case, �=�t�1,1 ,1�, we obtain

C�K� + k� =
3�t�k�a

2
, S�K� + k� = 0, �35�

which is consistent with the result of the previous section,
i.e., the extended s-wave case gives rise to an effective con-
ventional, fully gapped s-wave pairing near the Dirac points
with a doping-dependent magnitude of the gap. The q depen-
dence in the entire Brillouin zone �BZ� is shown for the
d-wave gaps in Fig. 5.

The question is, have we managed to simplify the expres-
sions compared to the atom-basis picture such that an ana-
lytical approach has been rendered viable in the d-wave
case? At first sight, it appears that the situation is still rather
complicated as there are two “gaps” in Eq. �31�, namely, Ck
and Sk. However, upon diagonalizing Nk to obtain its eigen-
values, we find

Ek = ���t�k + ����2 + Sk
2��2 + Ck

2, �36�

where again �= �1 refers to e-like and h-like particles,
while �= �1 refers to the conduction and valence band.
From Eq. �36�, it is clear that Sk simply renormalizes the
chemical potential � while Ck is the true superconducting
gap. Assuming here a doped situation where ���t, we may
certainly neglect Sk compared to �, and we therefore set Sk
=0 in Eq. �31�. The situation has now been considerably
simplified. We are left with a single-gap superconductor with
normal dispersion t�k and gap Ck where the gap has a simple

kx kx

ky

dx2−y2 dxy

FIG. 5. �Color online� Plot of the q dependence of the two
d-wave symmetry order parameters �Cq�. Red color represents posi-
tive sign, blue color negative sign, with zero being white. The first
Brillouin zone is marked with a black line. Near the Dirac points,
�qx ,qy�= �0, �

4�

3�3a
�, at the zone corners, effective py- or px-wave

symmetries emerge in the low-energy regime.
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px- or py-wave symmetry, which allows us to continue ana-
lytically.

For the px-wave symmetry, the situation becomes qualita-
tively different from the conventional s-wave case since
there are now zero-energy states �ZES� located near the in-
terfaces. Since we are considering transport along the x di-
rection, the criterion for the existence of ZES is that the order
parameter satisfies ����=−���−��. Clearly, this is the case
for a px-wave symmetry with �����cos �, whereas the
py-wave case does not host any ZES. Let us here consider the
case of no FVM. In the absence of ZES, the Andreev-bound
states in the normal region may be written quite generally as


� = � �������1 − ����sin2���/2� , �37�

where again ���� is the angularly resolved transmission co-
efficient in the normal state and �� is the phase difference
between the superconducting regions. It is seen that Eq. �37�
is formally equivalent to the Andreev-bound state spectrum
for a conventional s-wave symmetry, with the only differ-
ence that the gap now has an angular dependence, i.e., �
=����. As a result, one would expect qualitatively the same
results for the Josephson current when comparing the
py-wave case with the s-wave case. Quantitatively, the mag-
nitude of the current would be reduced due to angular aver-
aging over the gap.

We now consider the px-wave symmetry featuring ZES,
and one then in general finds35


� = � �����������cos���/2� , �38�

where, ����=�0 cos �. The normalized Josephson current
then becomes

IJ/I0 = 2J sin���/2�sgn�cos���/2�� ,

J = �
−�/2

�/2

d� cos2 ������ ,

���� =
cos2 �

1 − sin2 � cos2�P cos ��
, P = �L/vF. �39�

We proceed to discuss the length dependence and phase de-
pendence of this Josephson current, and especially investi-
gate how it differs from the conventional s-wave case where
there are no ZES. As seen in Fig. 6�a�, the current still dis-
plays oscillations as a function of the width L in the strongly
doped case ���0, but the oscillation-amplitude is consider-
ably smaller than for the s-wave symmetries. In Fig. 6�b�, we
give the current-phase relationship for the Josephson junc-
tion. As seen, there is now an abrupt crossover at ��=�
which should be contrasted with the smooth behavior in the
s-wave case shown in Fig. 3�b�. An interesting aspect is that
in the present case of d-wave symmetry, the junction energy
is minimized at ��=�, while in the s-wave case the mini-
mum of free energy occurs at a phase difference �0 which
lies between 0 and �.

We proceed to investigate the Josephson current when
there is a substantial FVM between the S and N regions. In
this case, we obtain from Eq. �38� that

IJ =
e�0

�
�
n=0

N

tn
��n sin���/2�sgn�cos���/2�� , �40�

where tn models the angular dependence of the gap. For the
most interesting px-wave case, we choose tn=cos�n� /2N�.
The resulting critical current is shown in Fig. 7�a�, using the
parameters �S /�0=150 and W /�=30. As seen, the current
decays like L−1 in the regime �N /�0�1–10 while oscilla-
tions appear upon increasing �N further, just as in the s-wave
case. In agreement with Fig. 6�a�, it is seen that the
oscillation-amplitude is smaller than in the s-wave case. The
current-phase relationship in the case of a strong FVM for
the d-wave symmetries is shown in Fig. 7�b�.

B. Numerical results

In this section we will report on the self-consistent nu-
merical results for SNS graphene junctions with both con-
ventional s wave and unconventional SB pairing contacts.
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FIG. 6. �Color online� Josephson current for the dxy-wave sym-
metry �giving rise to an effective px-wave symmetry at the Dirac
points� with no FVM between the S and N regions. �a� Plot of the
length dependence of the critical current. �b� Plot of the current-
phase relationship for � /�0=50.
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Our main focus is to complement the analytical work and
point to situations where a self-consistent approach is a must
in order to capture the correct behavior. We are also able to
extract additional data not available through an analytical
approach, such as the proximity effect and LDOS, and we
will start with reporting these below. This will provide the
necessary background to interpret the Josephson current and
how it in some cases differs significantly from the analytical
result.

As shown above through analytical work, the extended
s-wave solution for SB pairing contacts manifests itself as an
on-site pairing gap at nonzero doping, which is always the
case in the S regions. We therefore choose to not focus on
this solution and only study the two distinct d-wave solutions
in Eq. �2� and compare these with on-site s-wave contacts.
More detailed results for the on-site s-wave solution can be
found in earlier work by some of the authors.12

Figure 8 shows the proximity effect in terms of the nor-
malized pair amplitude for several superconducting symme-
tries and interface combinations and at multiple doping lev-
els in the N region.

Solid black lines are the results for on-site s-wave pairing
which show a pronounced depletion of pairs on the S side of
the interfaces and the accompanied leakage of pairs into the
N regions. This depletion/leakage is stronger at higher dop-
ing levels. The red dashed curve is the result for the zigzag
interface with dx2−y2-wave symmetry contacts, i.e., an effec-
tive py-wave symmetry at low energies, and it displays a
much weaker proximity effect compared to the s-wave con-
tacts. In fact, at zero doping in N there is only a very small,
and interestingly, completely flat, nondistance dependent, su-
perconducting pair amplitude inside the junction. The small
oscillatory pattern present, especially at lower doping, for
this junction can be attributed to charge fluctuations due to
the FVM at the interface and is seen also for the s-wave
solution,12 though it is less pronounced there. The green
dash-dotted and blue dotted lines are the results for the
dx2−y2-wave pairing on the armchair interface and the
dxy-wave contacts on the zigzag interface, respectively. Both
of these have an effective px-wave symmetry at low energies
and should therefore to a good approximation be the same, as
is also seen here. We will thus from hereon only report re-
sults for the armchair dx2−y2-wave pairing. The depletion of
pair amplitude on the S side of the interface is notably larger
for these contacts compared to s-wave contacts, but the in-
duced pair amplitude in N is nevertheless not enlarged. Col-
loquially speaking this means that these contacts have in
total lost more pairs than junctions with conventional con-
tacts. This effect can be attributed to the formation of quasi-
particle ZES at the SN interfaces.

The presence of ZES for the dxy-wave symmetry on the
zigzag interface, or equivalently the dx2−y2-wave symmetry
on the armchair interface, is the most prominent differences
between the two different d-wave symmetries in the analyti-
cal framework. The TB BdG framework allows for a direct
access to the LDOS and therefore any ZES formation. Figure
9 shows the results for s-wave contacts �a, d� and dx2−y2-wave
contacts on the zigzag �b, e� and armchair interfaces �c, f�.

For conventional s-wave contacts we see, as expected, a
full gap in the S regions and for short enough junctions this
gap persists inside N for both zero �a� and moderately doped
�d� N regions. However, the situation is quite different for the
d-wave contacts. Here, the order parameter in the band-
structure basis, Cq in Eq. �32�, has nodes on the Fermi sur-
face leading to a familiar V-shaped DOS in the gap. In addi-
tion to this feature, we also see pronounced peaks in the
LDOS at zero energy at the SN armchair interfaces for
dx2−y2-wave contacts as predicted. These ZES are most
prominent in the large FVM limit �c� but exists even when
the N region is moderately doped and the FVM is smaller �f�.
At no FVM there is no trace of ZES at the interface. This
case corresponds to a diminishing interface barrier Z and
even in regular Blonder-Tinkham-Klapwijk �BTK� theory for
d-wave SN junctions there is then no distinct signatures of
the ZES since the transmission probability is unity for Z=0
�see, e.g., Ref. 36�. Note that the lighter color throughout the
N region in all junctions simply reflect the fact that the DOS
is lower here since �N��S.

In Figs. 8 and 9 we have seen that different order param-
eter symmetries in the contacts alter the proximity effect and
LDOS significantly and it is therefore expected that there
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FIG. 8. �Color online� Proximity effect in terms of normalized
pair amplitudes when ��N�=0 eV �a�, ��N�=0.7 eV �b�, and
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will be a large difference in the Josephson currents as well.
Here, we will focus on two cases; the dependence of the
Josephson current on the phase difference across the junction
and on junction length. Figure 10 shows the dependence of
the Josephson current I on the phase difference �� across
the junction for different doping levels in N for a junction of
length L=0.42�. Here, �� is the phase difference just across
the N region which will always be smaller than the largest
phase difference between the two contacts, �, for any finite
Josephson current. This is why the numerical results, espe-
cially for larger currents, cannot be extended to large ��
values. The numerical results are explicitly calculated for
infinitely wide junctions, but by letting W→� for the ana-
lytical results we are able to compare analytical and numeri-
cal solutions in the zero and moderately doped cases. In the
case of no FVM, the analytical result does not depend on the
width and a comparison is much less straightforward and
therefore not plotted in Fig. 10�c�.

Let us first focus on the numerical results alone, which are
the solid lines in Fig. 10. For zero doping in N, dx2−y2-wave
contacts on the armchair interface �green, +� have the highest
current. This is expected since this is the only configuration
with ZES at the SN interfaces and these states will strongly
intensify the tunneling current through the junction.37 At

least in terms of the Josephson current, the formation of the
ZES clearly makes up for the relative loss of pair amplitude
seen in Fig. 8. We note that the relative enhancement in the
current for dx2−y2-wave contacts on armchair interface com-
pared to s-wave contacts is reduced when the FVM at the
interface is reduced. This is also to be expected as the
strength of the ZES diminishes with increased doping level
in N. In fact, when the ZES disappear at no FVM, the Jo-
sephson current is lower than for the similarly strong s-wave
pairing contacts. Of all the symmetries investigated,
dx2−y2-wave pairing on the zigzag interface �red, �� has the
lowest current in all three doping regimes. This is consistent
with its smallest proximity effect as seen in Fig. 8. Finally,
also note that the current for all three different pairings in-
creases with increasing doping level in N.
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Let us now comment on the explicit �� dependence on
the current and also make a comparison with the analytical
results. The s-wave contacts show a distinct nonsinusoidal
dependence with the numerical results closely tracking the
analytical results at low doping levels. At moderately doping
the analytical results peak at a higher �� value than the
self-consistent numerical results, around 0.72� compared to
0.56�. However, the discrepancy is only moderate, both in
terms of critical �� and I, as already reported in Ref. 12. For
the d-wave contacts the situation is, however, quite different.
Especially big is the discrepancy for the case with ZES at the
interfaces. Here, the analytical results show a distinct
sgn�cos��� /2��sin��� /2� behavior, which is a direct conse-
quence of the presence of the ZES, and a very large critical
current for all doping levels. The self-consistent results in-
stead display an almost sin����-like curve with a signifi-
cantly lower critical current. We believe this large difference
can be attributed to the importance and strength of the ZES.
While the ZES are present even in the self-consistent solu-
tion and there causes an enhancement of the Josephson cur-
rent, its importance seem to be significantly reduced within a
self-consistent approach. This would explain both the smaller
amplitude and the more traditional sin���� curve. Since the
effect of the ZES is decreased with increasing doping level
the discrepancy between the analytical solution and the self-
consistent work slightly decreases in terms of maximum cur-
rent, but the different �� dependence will remain as long as
the ZES are nonzero in either approach. It might be worth
mentioning here that ZES have been found to be very sensi-
tive to interface properties. Similar numerical solutions
schemes as applied here for d-wave contacts on the square
lattice have found that the ZES can quickly diminish in the
presence of random interface potentials, simulating
disorder,39 or for nonstraight interfaces destructive interfer-
ence between different lattice sites can completely kill the
ZES.38 It is therefore very likely that the reduced importance
of the ZES in our numerical solution stems from the fact that
even a completely smooth, disorder free armchair interface
as present in our calculations, is not absolutely flat in the
continuum-sense.

However, also the dx2−y2-wave symmetry on the zigzag
interface shows pronounced differences between the analyti-
cal and self-consistent solutions. Here, the phase dependence
is similar, with the critical phase difference slightly increas-
ing with doping level in N, but the current for these junctions
is significantly enhanced in the self-consistent solution. At
the Dirac point there is a �60% increase in the critical cur-
rent compared to the analytical solution. This enhancement
increases with doping level in N, being �80% at 0.7 eV
doping. It is interesting that we see this enhancement in the
current for the self-consistent solution despite the proximity
effect causing less leakage into N for these contacts com-
pared to s-wave pairing. That also means less depletion of
the order parameter in the S region of the interface which
will give rise to a stronger tunneling and, apparently, this
effectively even overcompensates for the relative lack of pair
amplitude in N.

The above shows that for unconventional contacts a self-
consistent approach is necessary in order to accurately deter-
mine the Josephson current, both in terms of phase depen-

dence and critical current. We have identified at least two
causes for this. First, at SN interfaces where ZES are present,
a self-consistent calculation is necessary in order to properly
evaluate the importance of the ZES to the overall transmis-
sion of the junction. Second, the proximity effect itself can
be considerably different for unconventional contacts as
compared to s-wave contacts. This gives rise to the main
source of discrepancy in the results between the analytical
and self-consistent approach in the case of the dx2−y2-wave
symmetry on the zigzag interface.

Next, we report on the junction length dependence of the
Josephson current. The analytical approach used here is only
reliable in the short junction regime where the current is
mainly carried by the Andreev-bound states. For the self-
consistent TB BdG approach such a limitation does not exist
and we can therefore extend the results to much longer junc-
tions. On the other hand, limited computational time requires
relatively short superconducting coherence lengths and with
the parameters used here the shortest junctions we can study
have L=0.04�. Also, for these short junctions there will be a
substantial current across the junction and, as a result, the
available phase difference �� across the junction is drasti-
cally reduced making it hard to reach ��c for very short
junctions. This means that we effectively do not have any
results for junctions shorter than �0.1� for �=0 eV and
�0.25� for �=0.7 eV. For relatively large junction lengths
the analytical results unfortunately start to become question-
able and we can therefore not make a comparison between
the analytical and the self-consistent results over any ex-
tended length scale. Figure 11 shows the critical current Ic vs
length of junction L for all three cases of symmetries of the
pairing at doping levels 0 eV �a� and 0.7 eV �b� in N.

At zero doping in N �a� s-wave contacts show a relatively
good agreement between the analytical and self-consistent
results, although the length dependence is somewhat stronger
in the self-consistent case.12 A simple least-square fit to the
functional form Ic=CL−� gives �=1.3 for the self-consistent
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FIG. 11. �Color online� Ic vs L for �N=0 eV �a� and 0.7 eV �b�
for conventional s-wave contacts �black, ��, dx2−y2-wave contacts
with zigzag interfaces �red, �� and armchair interfaces �green, +�.
The current is given in units of I0=eW / ���� when vF is set to 1.
Analytical results are shown with dashed lines and calculated for
the width W=30�, which approximates the infinite width of the
numerical results.
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curve but only 0.8 for the analytical results. The dx2−y2-wave
contacts on the zigzag interface show a similar increased
length dependence for short junctions with �=2 for the self-
consistent results and 1.3 for the analytical counterpart. The
dx2−y2-wave contacts on the armchair interface have the
weakest L dependence with only �=1.1 for the self-
consistent results. The analytical results in this case give a
bad fit to a power-law dependence as the critical current
levels off for short junctions. There are no noticeable oscil-
lations in the critical current as a function of junction length
in the undoped regime for either of s- or the dx2−y2-wave
contacts with the zigzag interfaces for either solution
method. However, dx2−y2-wave contacts with the armchair
interface exhibit peaks in the critical current at every 6 unit
cells or 0.14� in the self-consistent approach. These are most
pronounced for short junctions, but also exist for the longest
junctions we have studied. Since the analytical solution does
not capture these oscillations, we attribute the peaks to reso-
nance transmission due to changes in the relative strength or
interactions of the ZES.

At moderate doping and thus a smaller FVM �b� we see a
fairly large discrepancy in the critical value of the current
between the analytical and the self-consistent solutions for
all three contacts, as also seen in Fig. 10. The length depen-
dence is however very similar in the two solutions for both s-
and dx2−y2-wave contacts on the zigzag interface. Here, �
=0.5 and 0.85, respectively. For the junction with ZES, the
length dependence is harder to estimate because of the lack
of short junction self-consistent data but the results approxi-
mately vary from �=0.2 to 0.5 when self-consistency is in-
cluded. At moderate doping both the analytical and the self-
consistent data show long wavelength oscillations for
especially the s- and dx2−y2-wave contacts with the zigzag
interfaces. While it is not straightforward to compare fre-
quencies and amplitudes of the analytical and self-consistent
approaches there seem to be an overall agreement. For
dx2−y2-wave contacts on the armchair interface, we again find
short wavelengths resonance transmission peaks in the self-
consistent solution, but we can in this case not easily identify
any distinct frequency.

Not only do the I vs �� and Ic vs L curves differ most for
the dx2−y2-wave contacts on the armchair interface, but Fig.
12 shows that there is a strong junction length dependence
on the critical phase difference ��c where the maximum
current is reached. As seen in Figs. 6 and 7, ��c=� for all
junction lengths in the analytical solution in this case,
whereas the self-consistent solution shows ��c increasing
from around 0.3� in the shortest junctions we could study to
above 0.6� in the longest junctions. The spread in ��c could
be even larger, but the curves seem to level out at large
junction lengths. Interestingly, this does not only mean that
the maximum current is not reach at a � phase difference,
but also that the phase difference is advanced compared to
the conventional sin���� curve for short junctions. It might
be worth noting that there is a fair amount of fluctuations in
the data in Fig. 12. Part of this is due to the way we measure
the Josephson current. We apply a fixed phase difference
across the whole SNS structure, thus technically we are only
able to give an interval for the critical current and phase
difference. However, the peaks in critical current seen in un-

doped junctions for every 6 unit cell are not a numerical
artifact, and as seen, they are also not correlated with the
wiggles in the critical phase difference. We admit that it is
somewhat harder to draw the same conclusion in the moder-
ately doped case. There is no similar junction length depen-
dence for s- or dx2−y2-wave pairing on the zigzag interface,
but here ��c is fixed over the whole range of L we investi-
gate.

IV. CONCLUSIONS

In summary, we have studied the Josephson current in a
graphene superconductor/normal/superconductor �SNS�
junction. Superconductivity is induced in graphene by means
of the proximity effect from a superconducting host material.
In particular, we assume that superconducting contacts are
deposited on top of the graphene sheet as realized
experimentally.4 Whereas previous works on the Josephson
current in graphene have mainly treated only an isotropic
s-wave symmetry for the superconducting order
parameter,7–14,16,18,20 we here also present an analysis for an-
isotropic pairing that arises due to nearest-neighbor interac-
tions. This latter pairing can either have an extended s-wave
symmetry or belong to any linear combination of dxy and
dx2−y2.

We show that a junction with extended s-wave symmetry,
which displays an effective px+ipy-wave symmetry near the
Dirac points, is equivalent to a junction with on-site, isotro-
pic s-wave pairing. While s-wave pairing has been studied
before, we here report on newly found oscillations in the
critical current as function of junction length in both junc-
tions with no Fermi vector mismatch �FVM� at the SN inter-
faces and in heavily doped junctions with a strong FVM.

For the case of d-wave superconducting contacts we limit
our investigation to considering only dx2−y2-wave pairing on
the zigzag and armchair interfaces. Since all pairings are
induced from on top deposited contacts, different symmetry
choices simply correspond to different orientations of the
contacts relative to the graphene sheet. These chosen sym-
metries give rise to effective px- and py-wave pairing, respec-
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tively, at low energies. Therefore dx2−y2-wave pairing on the
armchair interface is at low energies equivalent to dxy-wave
pairing on the zigzag interface and so on, making our study
quite general. In an experimental setup, any chiral interface
on the graphene could be realized. However, we believe that
this situation can at least qualitatively be predicted from our
results and will mainly depend on the presence of zero-
energy states �ZES� at the interfaces. These states appear if
the order parameter changes sign when the angle of inci-
dence for the quasiparticles on the SN interface is changed
from � to �−� as is the case for dx2−y2-wave pairing on the
armchair interface.

We calculate the Josephson current both analytically and
numerically by a self-consistent approach for all the above
symmetries. Whereas there is good agreement between the
two treatments for the s-wave superconducting order param-
eters, there is a pronounced deviation between the two meth-
ods for anisotropic pairing, in particular, when ZES are
present. These states at zero energy will easily dominate the
transport through the junction, and while they are present
even in the numerical results, their effect on the Josephson
current is strongly suppressed when self-consistency is
achieved. One easily identified source for this deviation is
the first-order expansion to p-wave symmetries around the
Dirac points done in the analytical treatment. As seen in Fig.
5, the d-wave order parameters differ from pure p waves at

higher energies. Since the contacts are likely to induce a
rather heavy doping into the graphene in the S regions one
might argue that this effect is not negligible. However, as
seen in Fig. 8, the proximity effect is remarkably similar for
the dxy wave on zigzag interface and the dx2−y2 wave on the
armchair interface, thus pointing to the fact that this is not a
major source of deviation between the analytical and the
self-consistent treatment. It is instead the self-consistency for
the proximity effect inside the junction that is the crucial
component. Therefore, a numerical, self-consistent calcula-
tion is required in order to properly address the transport
properties of graphene when the superconducting pairing is
anisotropic in k-space, especially when zero-energy states
are present at the interface.
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